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Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 1 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 3 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 1.1 Guess the formula (1 point).

Consider the recursive formula de�ned by a1 = 1 and an+1 = 2an + 1. Find a simple closed formula
for an and prove that an follows it using induction.

Hint: Write out the �rst few terms. How fast does the sequence grow?

Solution:

Writing out the �rst few terms, we get: 1, 3, 7, 15, 31, etc. From this sequence, we guess the closed
formula

an = 2n − 1.

Now we prove an = 2n − 1 by induction.

• Base Case.
For n = 1:

1 = a1 = 21 − 1 = 1,

so it is true for n = 1.

• Induction Hypothesis.
Now we assume that it is true for n = k, i.e., ak = 2k − 1.

• Induction Step.
We will prove that it is also true for n = k + 1.

2k+1 − 1 = 2k+1 − 2 + 1 = 2k · 2− 2 + 1 = (2k · 2− 2) + 1 = 2(2k − 1) + 1

= 2ak + 1 = ak+1

Hence it is true for n = k + 1.

Exercise 1.2 Sum of Squares.



Prove by mathematical induction that for every positive integer n,

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution:

• Base Case.
Let n = 1. �en:

1 =
1 · (1 + 1) · (2 + 1)

6
= 1 .

• Induction Hypothesis.
Assume that the property holds for some positive integer k. �at is,

12 + 22 + 32 + · · ·+ k2 =
k(k + 1)(2k + 1)

6
.

• Inductive Step.
We must show that the property holds for k+1. Let’s add (k+1)2 to both sides of our inductive
hypothesis.

12 + 22 + 32 + · · ·+ k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6

=
(k + 1)(2k2 + k + 6k + 6)

6

=
(k + 1)(2k2 + 7k + 6)

6

=
(k + 1)(k + 2)(2k + 3)

6

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6
.

By the principle of mathematical induction, this is true for any positive integer n.

Exercise 1.3 Sums of powers of integers (1 point).

In this exercise, we �x an integer k ∈ N0.

(a) Show that, for all n ∈ N0, we have
∑n

i=1 i
k ≤ nk+1.

Solution:

As all terms in the sum are at most nk, we have:
n∑

i=1

ik ≤
n∑

i=1

nk = n · nk = nk+1.
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(b) Show that for all n ∈ N0, we have
∑n

i=1 i
k ≥ 1

2k+1 · nk+1.

Hint: Consider the second half of the sum, i.e.,
∑n

i=dn
2
e i

k. How many terms are there in this sum?
How small can they be?

Solution:

We have:
n∑

i=1

ik ≥
n∑

i=dn
2
e

ik ≥
n∑

i=dn
2
e

(n
2

)k
=
(
n−

⌈n
2

⌉
+ 1
)
·
(n
2

)k
By de�nition of d·e, we have

⌈
n
2

⌉
− 1 ≤ n

2 , hence n−
⌈
n
2

⌉
+ 1 ≥ n

2 . Hence

n∑
i=1

ik ≥ n

2
·
(n
2

)k
=

1

2k+1
· nk+1.

Together, these two inequalities show that C1 · nk+1 ≤
∑n

i=1 i
k ≤ C2 · nk+1, where C1 = 1

2k+1 and
C2 = 1 are two constants independent of n. Hence, when n is large,

∑n
i=1 i

k behaves “almost like
nk+1” up to a constant factor.

Exercise 1.4 Asymptotic growth (1 point).

Recall the concept of asymptotic growth that we introduced in Exercise sheet 0: If f, g : N → R+ are
two functions, then:

• We say that f grows asymptotically slower than g if lim
m→∞

f(m)
g(m) = 0. If this is the case, we also

say that g grows asymptotically faster than f .

Prove or disprove each of the following statements.

(a) f(m) = 100m3 + 10m2 +m grows asymptotically slower than g(m) = 0.001 ·m5.

Solution:

True, since

lim
m→∞

f(m)

g(m)
= lim

m→∞

100m3 + 10m2 +m

0.001m5

= lim
m→∞

105m−2 + 104m−3 + 103m−4

= 105 lim
m→∞

m−2 + 104 lim
m→∞

m−3 + 103 lim
m→∞

m−4

= 105 · 0 + 104 · 0 + 103 · 0 = 0.

(b) f(m) = log (m3) grows asymptotically slower than g(m) = (logm)3.

Solution:

True, since

lim
m→∞

f(m)

g(m)
= lim

m→∞

log (n3)

(log n)3
= lim

m→∞

3 log n

(log n)3
= lim

m→∞
3 · 1

(log n)2
= 3 · 0 = 0.
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(c) f(m) = e2m grows asymptotically slower than g(m) = 23m.

Hint: Recall that for all n,m ∈ N, we have nm = em lnn.

Solution:

True, since

lim
m→∞

f(m)

g(m)
= lim

m→∞

e2m

23m
= lim

m→∞

e2m

e3m ln 2
= lim

m→∞
e(2−3 ln 2)m = lim

m→∞
e(−0.079...)·m = 0.

(d) f(m) =
∑m2

i=1 i grows asymptotically slower than g(m) =
∑m

i=1 i
2.

Hint: You can reuse the inequalities from exercise 1.2.

Solution:

False. With the inequalities from 1.3, we have
∑m2

i=1 i ≥
1
4

(
m2
)2

= 1
4m

4 (inequality from 1.3.b
with k = 1 and n = m2) and

∑m
i=1 i

2 ≤ m2+1 = m3 (inequality from 1.3.a with k = 2 and
n = m)1. Hence, lim

m→∞
f(m)
g(m) ≥ lim

m→∞

1
4
m4

m3 = lim
m→∞

1
4m = +∞, and f does not grow asymptotically

slower than g.

(e)* If f(m) grows asymptotically slower than g(m), then log(f(m)) grows asymptotically slower than
log(g(m)).

Solution:

False. Consider f(m) = m and g(m) = m2. We have lim
m→∞

f(m)
g(m) = lim

m→∞
m
m2 = lim

m→∞
1
m = 0,

hence f grows asymptotically slower than g. However, log(f(m)) = logm and log(g(m)) =

log (m2) = 2 logm, therefore lim
m→∞

log(f(m))
log(g(m)) = lim

m→∞
logm
2 logm = 1

2 6= 0 and log(f(m)) does not
grow asymptotically slower than log(g(m)).

(f)* f(m) = log(
√
log(m)) grows asymptotically slower than g(m) =

√
log(
√
m).

Hint: You can use L’Hôpital’s rule from sheet 0.

Solution:
1You can also show this from 1.2
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True, since

lim
m→∞

f(m)

g(m)
= lim

m→∞

log(
√
log(m))√

log(
√
m)

= lim
m→∞

(
log
(√

log(m)
))′

(√
log (
√
m)
)′ (L’Hôpital’s rule)

= lim
m→∞

1
2m logm

1

4m
√

log(
√
m)

= lim
m→∞

2
√

log (
√
m)

logm

= lim
m→∞

(
2
√
log (
√
m)
)′

(logm)′
(L’Hôpital’s rule again)

= lim
m→∞

1

m
√

log(
√
m)

1
m

= lim
m→∞

1

log (
√
m)

= 0.

Exercise 1.5 Proving Inequalities.

(a) By induction, prove the inequality

1

2
· 3
4
· 5
6
· . . . · 2n− 1

2n
≤ 1√

3n+ 1
, n ≥ 1.

Solution:

• Base Case.
For n = 1:

1

2
≤ 1√

4
,

which is an equality.

• Induction Hypothesis.
Now we assume that it is true for n = k, i.e.,

1

2
· 3
4
· 5
6
· . . . · 2k − 1

2k
≤ 1√

3k + 1
.

• Induction Step.
We will prove that it is also true for n = k + 1.

1

2
· 3
4
· 5
6
· . . . · 2k − 1

2k
· 2k + 1

2k + 2
≤ 1√

3k + 4

.

Plugging in the induction hypothesis, it is su�cient to prove.

1√
3k + 1

· 2k + 1

2k + 2
≤ 1√

3k + 4
⇔
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.
2k + 1

2k + 2
≤
√
3k + 1√
3k + 4

.

Rewriting:

2k + 1

2k + 2
≤
√

3k + 1

3k + 4

⇔
(
2k + 1

2k + 2

)2

≤ 3k + 1

3k + 4

⇔ (4k2 + 4k + 1)(3k + 4) ≤ (4k2 + 8k + 4)(3k + 1)

⇔ 12k3 + 28k2 + 19k + 4 ≤ 12k3 + 28k2 + 20k + 4

⇔ 0 ≤ k

Hence it is true for n = k + 1.

(b)* Replace 3n + 1 by 3n on the right side, and try to prove the new inequality by induction. �is
inequality is even weaker, hence it must be true. However, the induction proof fails. Try to explain
to yourself how is this possible?

Solution:

(b) Sometimes it is easier to prove more than less. �is simple approach does not work for the
weaker inequality as we are using a weaker (and insu�ciently so!) induction hypothesis in each
step.
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